

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2016
Lab 07 – Functions

Assignment: Lab 07 – Functions
Due Date: During discussion, March 28th through March 31st
Value: 10 points

Part 1: Scope
Everything in Python has a scope – the places in the program in which it is
accessible. For example, you can create a constant outside of main().

MAX_VAL = 8

def main():

 # etc

That constant is now a global constant, which means it can be accessed by
any code in the file. (Remember, for this course you are only allowed to have
constants be global – regular variables should not be declared outside of
functions.)

Local variables are only accessible to code within their same scope. If a
variable is declared in main(), a separate function called printInfo() will

not be able to access it. In the same way, a variable in printInfo() will

not be accessible to the code in main().

def printInfo():

 # this variable can't be accessed by main()

 varForPrintInfo = 5

def main():

 # this variable can’t be accessed by printInfo()

 varForMain = 17

main()

CMSC 201 – Computer Science I for Majors Page 2

Part 2: Functions
A function in Python is a way of compartmentalizing our code: a well-written
function does one thing, and does it very well. A function allows us to write a
piece of code once, and to then use, or “call,” the function whenever we want
to use that code.

A function has a few key parts:

1. Function name

 This is how we call the function. It tells Python that we want it to
use that function and execute its…

2. Function body

 This is the code that makes up the function. This is what the
function does when called.

3. Formal parameters (optional)

 A function uses parameters to take in information from the code
that called it. This is one of the ways that data is passed from one
piece of code to another. A function can have no parameters,
one parameter, or it could have a hundred!

4. Return statement (optional)

 A function can also return data to the code that called it. This is
the other way that data is passed around your program. A
function can return multiple variables; a function with no return

statement automatically returns None.

Let’s take a look at some example functions and how they work:

def printName(name):

 print("Hello, my name is", name)

This function is called printName(); it takes in one formal parameter

(name) and does not have a return statement. In order to use the code in

this function, we must call the function and pass it an actual parameter. The
actual parameter could be a variable, or it could be a literal string (one with
quotation marks around it).

CMSC 201 – Computer Science I for Majors Page 3

Here’s the printName() function again, but this time we also have a

main() that calls the function multiple times.

def printName(name):

 print("Hello, my name is", name)

def main():

 prezUMBC = "Hrabowski"

 prezUSA = "Obama"

 printName(prezUMBC)

 printName(prezUSA)

 printName("John Jacob Jingleheimer Schmidt")

main()

Note that we have called the function with variables and with a string literal.
Note also that the variable names we passed as actual parameters
(prezUMBC and prezUSA) do not match the name of the formal parameter.

Here is the output for the code above:

Hello, my name is Hrabowski

Hello, my name is Obama

Hello, my name is John Jacob Jingleheimer Schmidt

Part 3: Returning from Functions

Here is another example of a function.

def attemptChange(num):

 num = 7 * num

 return num

This function has a return statement, which means that it returns a value to

the code calling it. In order to “catch” or “save” this value, the code calling the
function must use the assignment operator to assign the value returned to
a variable for later use. Let’s examine what that would look like.

CMSC 201 – Computer Science I for Majors Page 4

Here is a main() function that calls the attemptChange() function two

times. What do you think the output of the following code will be?

def attemptChange(num):

 num = 7 * num

 return num

def main():

 num = 5

 print("num was first", num)

 attemptChange(num)

 print("num is now...", num)

 num = attemptChange(num)

 print("num is now...", num)

main()

Before we look at the output, let’s look at the two calls that are made to the
attemptChange() function. In the first one, we pass in num as our actual

parameter – but we don’t use the assignment operator in this statement.
What will happen to the num that is returned? Does num change in main()?

The second call to the attemptChange() function is identical, but this time

we are using the assignment operator. What does that mean for the value of
num in main()?

Here is the output:

num was first 5

num is now... 5

one last try: 35

From the output, we can see that the first call to the function didn’t do
anything to the value of num! We must use the assignment operator if we

want to save the values returned by our function. Even though main() and

attemptChange() both have variables named num, they are in different

scopes, and so a change to one does not mean a change to the other.

CMSC 201 – Computer Science I for Majors Page 5

Part 4A: Writing Your Program
After logging into GL, navigate to the Labs folder inside your 201 folder.

Create a folder there called lab7, and go inside the newly created lab7

directory.

linux2[1]% cd 201/Labs

linux2[2]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs

linux2[3]% mkdir lab7

linux2[4]% cd lab7

linux2[5]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs/lab7

linux2[6]% █

Once you’re in the folder, you will need to copy the starter file from my public
directory. Type (all on one line – don’t forget the period at the end!):
 cp /afs/umbc.edu/users/k/k/k38/pub/cs201/tv_shows_fxns.py .

To open the file for editing, type
 emacs tv_shows_fxns.py

and hit enter.

The first thing you should do in your new file is create and fill out the
comment header block at the top of your file. Here is a template:

File: tv_shows_fxns.py

Author: YOUR NAME

Date: TODAY'S DATE

Section: YOUR DISCUSSION SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description:

This file contains python code that implements lab5

(a TV show voting system) using functions to:

1) Get a choice

2) Find the name of the winner

Now you can start writing your code for the lab, following the instructions in
Part 3B.

CMSC 201 – Computer Science I for Majors Page 6

Part 4B: Creating Functions

At this point, if you try to run the file, you will get an error. That is because
the file is only partially completed for you.

You will need to update the file to complete the two function definitions and
two function calls. If you open the file, you should see comments boxed in by
signs – these are where you need to write new code. Read the function

header comments to see the details about the two functions.

The getVote() function should be similar to your code from the last lab.

The major difference is that you should let the user know they made an
incorrect choice before prompting again. (Feel free to use your code from
last lab to complete it, but be careful to pay attention to what you’re doing –
don’t just copy and paste!)

The getWinner() function is new code for this lab, and you will have to

code it up from scratch. Instead of simple presenting the results, you will
write code that determines the name of the winning show, based on the votes
given.

PRO-TIP: Both of these functions should have a return statement.

You will also need to write calls to both of these functions; the places where
these calls need to happen in main() are indicated for you. You shouldn’t

need to write any other code.

Sample output is on the next page;

Hints are on the page after that, if you need them.

CMSC 201 – Computer Science I for Majors Page 7

Sample output for this lab, with the user input in blue.

(Note that in the event of a tie, the show that comes first in the list wins.)

bash-4.1$ python tv_shows_fxns.py

1 - Daredevil

2 - Fargo

3 - Limitless

4 - Elementary

5 - Brooklyn 99

6 - Empire

7 - Supergirl

You and your friends are voting on a show to watch.

Which show would you like to vote for?

Enter '0' to stop voting: 4

Enter '0' to stop voting: 9

Invalid vote -- try again

Enter '0' to stop voting: 3

Enter '0' to stop voting: 5

Enter '0' to stop voting: 5

Enter '0' to stop voting: 2

Enter '0' to stop voting: 3

Enter '0' to stop voting: 7

Enter '0' to stop voting: 0

Here are the final votes:

Daredevil has 0 votes

Fargo has 1 votes

Limitless has 2 votes

Elementary has 1 votes

Brooklyn 99 has 2 votes

Empire has 0 votes

Supergirl has 1 votes

Limitless wins!

CMSC 201 – Computer Science I for Majors Page 8

Try to solve Part 4B on your own before you turn to these hints!

Are you stuck on how to get started?
Open up the tv_shows_fxns.py file and read the code, including the

comments. Do your best to understand what the code needs to do – worry
about how to do it afterwards.

Are the votes not updating?
You might have one of two problems. First, are you remembering to save the
choice the user made by using the assignment operator? Second, are you

remembering to add that vote to the votes list?

Stuck on how to start writing getWinner()?

You’ll need to use a for loop to iterate through the contents of the votes

list, and find the show that got the most votes.

Not sure how to find the name of the winner?
You’ll need to find two things: the current max number of votes, and where in
the list that current max was found. You can do it in a single for loop, but it

may be easier to use two for loops: one to find the max, and a second to

find where in the list the max is located.
(If you need to use two loops, you are highly encourage to implement it with
one for loop on your own time.)

Did you get an error like the following?
TypeError: unorderable types: str() > int()

When a function is called, the program needs to pass in actual parameters in
the same order as the function’s formal parameters. Try switching the order
of the two parameters when you call the getWinner() function.

CMSC 201 – Computer Science I for Majors Page 9

Part 5: Completing Your Lab

To test your program, first enable Python 3, then run tv_shows_fxns.py.

Try a few different inputs to see how well your program works.

bash-4.1$ python tv_shows_fxns.py

1 - Daredevil

2 - Fargo

3 - Limitless

4 - Elementary

5 - Brooklyn 99

6 - Empire

7 - Supergirl

You and your friends are voting on a show to watch.

Which show would you like to vote for?

Enter '0' to stop voting: 6

Enter '0' to stop voting: 6

Enter '0' to stop voting: 2

Enter '0' to stop voting: 3

Enter '0' to stop voting: 0

[etc]

Since this is an in-person lab, you do not need to use the submit command

to complete your lab. Instead, raise your hand to let your TA know that you
are finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

